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symmetry of a 3-D sphere, thus: oo/m coo0”, or
oo’ o0’ co’’. This has as subgroups all the irreducible
4-D point groups, including those isomorphous with
4.D space groups, enumerated by Coxeter (1934,
p.- 601). No doubt the (unlisted) reducible groups,
which may be formed as a product of two or more
groups of lower dimension, are also subgroups of
0o’ 0o’ 00”’, If other dimensional invariances are added,
then such products are sufficient to describe the
resulting symmetry; a symbol for this kind of sym-
metry is composed by bracketing those parts of the
symbol that refer to one of the multiplying subgroups.
For example, if the dimensional invariance is 2,4,
as in plane color groups, there is freedom within a
2-D plane, and also rotationally within the 2-D
‘color plane’ that is completely perpendicular in 4-D.
The symmetry group is a product of the symmetry
groups representing two planes, that is, (com)(com).
Di-rotation is present, as when you simultaneously
rotate 7/2 and change from red to green in Belov &
Tarkhova’s (1956, p.10) group ‘P4,’, but is not

essential to a description of the symmetry, that is

(0om) (com )oo”’ = (oom) (com).

I would like to express appreciation for helpful
discussion and criticism by Gabrielle Donnay, Z. V.
Jizba, Jan Korringa, and Adolph Pabst.
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Anisotropic Structure Factor Calculations.*

By D. R. FitzwAaTER
Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, Iowa, U.S.A.

(Recetved 21 July 1960 and in revised form 12 January 1961)

A general form of the anisotropic structure factor which is suitable for evaluation in any space group
is presented. A simple scheme for specifying the space group symmetry avoids the use of special
‘patches’. The suggested form in the case of general and most special positions reduces to a form
which permits substantial savings in the time required to form the function arguments and is well
adapted to computation of structure factors and derivatives on high speed digital computers.

Structure factor for general position
As was demonstrated by Levy (1956), the B in the
expression for the anisotropic temperature factor,

* Contribution No. 904. Work was performed in the Ames
Laboratory of the U.S. Atomic Energy Commission.

3 3
exp (— 3 X Bihihy),
i=1j=1
for symmetrically related positions, transform as do
the quadratic products of atomic coordinates, while
ignoring translational components.
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If x(1 represents the basic point of a set of equivalent
atoms and X represents another point of the set
obtained by the symmetry operation, we can write

x () =Cnx) fx(r) (1)

where C" is a 3 x 3 matrix and T(™ is a 3 x 1 matrix
representing a translational vector. While ignoring the
T, we can write

20 = Ca D) 2)
k
and
;0 =3 3 O W,y 3)
P
whence
ﬂﬁ(f) =220ik(r)ﬂkl(l)0ﬂ(r) . (4)
kol
If we let
3 3
My =33 ‘Bﬁ(r)h,hﬁ (5)
i

we can substitute (4) into (5) and obtain

3 3
My =33 BuW(Z Cuhi) (X Cphy) (6)
k1 i )

M0 =3 3 By Hy H) (7)
PR
where
HnN=CnTh , (8)

The superscript 7' implies the transpose of the ma-
trix Cm,

The exponent of the geometrical structure factor can
be written as

hTx(™ = HOTx ) 4 hTp) | 9)

The structure factor for a general set of positions
can now be expressed as

f X exp (—HOTBOH® + 271 (HNT XMW + hT1) . (10)

A center of symmetry or cell centering can be treated
in the usual way by using multiplicity factors and
summing over the appropriate points of the set. The
structure factor in essentially this form is used by
Busing & Levy (1959) in their least-squares program.

Structure factor for special positions

If a set of special positions have symmetry represented
by a diagonal matrix, some of the various parameters
will be zero or constant and the summation should be
carried out either over the points of the special set
or over the points of a general set using a multiplicity
factor.

If a set of special positions have symmetry repre-
sented by a non-diagonal matrix, the situation is
somewhat different in that some parameters may be
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expressed in linear combinations of the other param-
eters. One simple way to treat this situation is to
consider the ‘quadratic’ quantities as column vectors
such as

[ f1 7 fu| [Qu...Qun| [b1]
i Baz Qo1. .. Qan b2
Ba| _| Pas|_ | @s1...@sn b3 (11)
Ba| | 2012 | Qar...Qun 0
ﬂ5 2ﬂ13 Qs1. . .Qsn .
[ Bs| [ 2| |Qer-..Qen| |bal
xr1 P11 .. .le ay
I:.’L‘z:l = [le...sz] [ ], (12)
xr3 P31. N .P3m am
[ " HiH;
o HyH»
Hs H3H3
Hs H,H, (13)
H 5 H1H3
e L HyH3 i

The &; are the particular linearly independent set
chosen to represent the f;;. The £ are generated
by the use of Q and the specified b. The a; are similarly
chosen to represent the positional parameters. Since
some positional parameters may be constant and not
zero, a constant an may be required although it is
not to be varied. For each kind of ‘non-diagonal’
special position, the matrices P and Q must be sup-
plied. The set is described in terms of the b and a
vectors. The structure factor now becomes, in a
completely general form,

[ exp {—bTQTH ")+ 27 (HOTPa+ hTt)}. (14)

Method of calculation

Because of the group properties, we can write

Cn=N@D@ (15)

where the pair (p), (g) have a 1 to 1 correspondence
to (r). D@ are diagonal matrices and the N(®) are non-
diagonal matrices in addition to the unit matrix.
If we let the pair s, ¢t have a 1 to 1 correspondence to
1, we can write

o = (%‘ D@ N @by (%‘ D@ N iy ® by
= H0OH". (16)
The structure factor now becomes
f%‘%‘exp { %‘ Dss<4)Dt:‘4’%(%‘ Nis®) )
(5,9

X (2 Niet® hi)Quby+ 27t (X Diy@ 3 (3 Nuy® hy)Pija;
P i ik

+ 2 b} (17)
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The structure factor in this form (17) is applicable
to any position of any space group. It is easily seen
that the presence of the P;; and Q;; terms although
required for the evaluation of derivatives complicates
the calculation procedure. It would appear therefore,
that it would be worthwhile to use form (17) for
special positions of ‘non-diagonal symmetry’ and to
investigate the simpler form resulting in diagonal
P and Q. This simpler form is applicable to special
positions of ‘diagonal symmetry’ or to general posi-
tions, obtained by setting P=Q=1 and is given by

f 2 2 exp {Z Dss @D (3 Nis®hge) (X Nipe® hie)b;
P q € k k

+270i (X D3 @ (X Np®he)ai + 3 hiti™)} . (18)
@ 3 @

If the quantities
(Zhiti), (Z Nea®hy) and (X Nis® hy) (Z Nie® )
i k k &

are formed when the indices h; are first obtained, no
great amount of time is lost. As each set of b; or a;
are called from storage for calculation, the multiplica-
tion by the appropriate

(Z Niki®hi) or (X Nes®hi)(Z Nio P hy)
k k k

can be carried out. The subsequent summation over
g now has an invariant form, no matter what the value
of p may be. This form requires that the arguments
of the exponential be obtained as sums or differences
of the quantities above, since D@Dy @ = +1. If the
sum of the terms is prepared when the products are
formed, each successive argument for a new value of
g can be obtained (in a binary computer) by a left
shift 1 place of the terms which change sign and sub-
traction of the results from the sum. A similar proce-
dure will work for the positional parameters. A suit-
able set of D@ would be

1007 [1007 [1007 [ 100
[010] [019] [010] [010}.
001] L[ooT! [oo1] [o01

ANISOTROPIC STRUCTURE FACTOR CALCULATIONS

Each set of position coordinates would specify which
of the (r) points should be used in the structure
factor sum. As an example, the argument for the
thermal factor for the second matrix above would be
formed by

2 2 hihifij—2(2h1hs @13+ 2ho k3 fes)
T g

or in the alternative notation

23?#%—2 (,%ﬂsbs-}-.}febs) .

The proper choice of signs and terms is invariant and
can be built into the summation over ¢ part of the
program. The summation over p is accomplished by
looping and supplying a new set of

(Z Ngitothipy)
k

and of the products. This procedure results in a
substantial saving of multiplication time in the forma-
tion of arguments and permits a straight forward
treatment of symmetry transformations. In the worst
case of ‘non-diagonal’ special positions, the general
routine is used but the specification of the special
symmetry is easily made by means of the P and Q.
This avoids the difficulties of writing special patches.

The general form (17) can be handled in the same
way, if derivatives are not wanted, by simply entering
explicitly without P and Q each a; and b; and either
using a multiplicity factor or a selection device to
select a desired set of terms. However, if derivatives
are desired, the P and Q matrices are required to form
the proper linear combinations.
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