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symmet ry  of a 3-D sphere, thus :  oo/moooo", or 
oo' oo' oo". This has as subgroups all the irreducible 
4-D point  groups, including those isomorphous with 
4-D space groups, enumera ted  by  Coxeter (1934, 
p. 601). No doubt  the (unlisted) reducible groups, 
which m a y  be formed as a product  of two or more 
groups of lower dimension, are also subgroups of 
oo' oo' oo". I f  other dimensional invariances are added, 
then such products  are sufficient to describe the 
resulting symmet ry ;  a symbol for this kind of sym- 
me t ry  is composed by  bracket ing those par t s  of the 
symbol t h a t  refer to one of the mult iplying subgroups. 
For  example,  if the  dimensional invariance is 2, 4, 
as in plane color groups, there is freedom within a 
2-D plane, and  also rota t ional ly  within the  2-D 
'color plane'  t h a t  is completely perpendicular  in 4-D. 
The s y m m e t r y  group is a product  of the s y m m e t r y  
groups representing two planes, t h a t  is, (oom)(oom). 
Di-rotat ion is present,  as when you simultaneously 
ro ta te  g/2 and change from red to green in Belov & 
Tarkhova ' s  (1956, p. 10) group 'P4~', but  is not  
essential to a description of the symmet ry ,  t ha t  is 
(oom) (~m)~o" = (~m)(oom). 

I would like to express appreciat ion for helpful 
discussion and criticism by  Gabrielle Donnay,  Z .V .  
J izba,  J a n  Korr inga,  and Adolph Pabst .  
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A general form of the anisotropic structure factor which is suitable for evaluation in any space group 
is presented. A simple scheme for specifying the space group symmetry avoids the use of special 
~patches'. The suggested form in the case of general and most special positions reduces to a form 
which permits substantial savings in the time required to form the function arguments and is well 
adapted to computation of structure factors and derivatives on high speed digital computers. 

Structure factor for general position 

As was demons t ra ted  by  Levy (1956), the  fl~j in the 
expression for the  anisotropic t empera ture  factor,  

* Contribution No. 904. Work was performed in the Ames 
Laboratory of the U.S. Atomic Energy Commission. 

3 3 
exp (--  .~' .~  ~i~hih~), 

i=l j=l 

for symmetr ica l ly  related positions, t ransform as do 
the quadrat ic  products  of atomic coordinates, while 
ignoring t ransla t ional  components. 
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If x(~) represents the basic point  of a set of equivalent  
atoms and x(~) represents another  point  of the set 
obtained by  the s y m m e t r y  operation, we can write 

X(r) = C( r )x (1 )  _~_~f (r) (1) 

where C(r) is a 3 × 3 mat r ix  and "r(r) is a 3 x 1 ma t r ix  
representing a t ransla t ional  vector. While  ignoring the 
"r(r), we can write 

x¢~) = ~ C~gr)xg~) (2) 
k 

and 

whence 

If  we let 

x i ( r ) x j  (r) -~ ~ ~ Cik(r)xk(1)Xl  (1) Cj l  (r) (3) 
k l 

#i t(r)  .~ ~ ~ e lk ( r )  #kl(1) CJt (r) . (4) 
k l 

3 3 
Mh (~) = 2 . Z  fl~j(~)hih~ (5) 

i j 

we can subst i tu te  (4) into (5) and obta in  

3 3 
i h ( r ) = ~ , . Z  fl~:~(~)(.ZC~#~)hO(~'C~(~)h~) (6) 

k l i ] 

M h  (r) -~ ~ ~ fl~(~)H~(~)H~(~) (7) 
i ] 

where 
H(~) = C(~)~h. (8) 

The superscript  T" implies the transpose of the ma- 
t r ix  C(r). 

The exponent  of the geometrical  s tructure factor can 
be wri t ten as 

h T x  (r) : H ( r ) T x  (1) -t- h T T  (r) • (9) 

The structure factor for a general set of positions 
can now be expressed as 

f ~  exp ( - H(r)T~(I)H(r) + 27H (H(r)rx(~) + hT'r(r))). (10) 
r 

A center of symmet ry  or cell centering can be t reated 
in the usual  way by  using mul t ip l ic i ty  factors and  
summing  over the appropriate  points  of the set. The 
structure factor in essential ly this  form is used by 
Busing & Levy (1959) in their  least-squares program. 

expressed in l inear combinat ions of the other param- 
eters. One simple way  to t reat  this  s i tuat ion is to 
consider the 'quadrat ic '  quanti t ies  as column vectors 
such as 

bl I 
I f12~ I Q2~..Q2~ I b~ 
I /788[ Q3~..Q3~[ b3 

# 4 [  -~" I 2#12  ] ~--" I Q 4 1 . . Q 4 n  I . , ( l l )  

[2fl~al I Q s ~ . . Q s ~ l  
L#ol L2#  J LQ  ..Q6 _I I# I 

ix1] [Pll Pi ] [al] 
x2 = Pro. • .P2m . , (12) 
x3 Pro. • • P3m am 

~'~  H 2 H 2  

~ :  H~H3 
H,H~. 

5"~5 H1H3 
_ ~'~6 _ _ HeH3 _ 

(13) 

The b~ are the par t icular  l inear ly  independent  set 
chosen to represent the fl~j. The flij(r) are generated 
by  the use of O and the specified b. The a~ are s imi lar ly  
chosen to represent the positional parameters.  Since 
some positional parameters  m a y  be constant  and not  
zero, a constant  am m a y  be required al though it  is 
not  to be varied. For each kind of 'non-diagonal '  
special position, the matr ices  P and O must  be sup- 
plied. The set is described in terms of the b and a 
vectors. The structure factor now becomes, in a 
completely general form, 

f ~ "  exp { -  b rQrj ( f ( r )  + 2~i  (H(r)Tpa + hr'r(r))}. (14) 
r 

Method of calculation 
Because of the group properties, we can write 

C(r) = N(p)D (q) (15) 

where the pair  (p), (q) have  a 1 to 1 correspondence 
to (r). D(q) are diagonal  matrices and the N(p) are non- 
diagonal matrices in addi t ion to the uni t  matr ix.  
If  we let the pair  s, t have a 1 to 1 correspondence to 
i, we can write 

Structure factor for special  posit ions 
If a set of special positions have symmet ry  represented 
by  a diagonal  matr ix ,  some of the various parameters  
will be zero or constant  and the summat ion  should be 
carried out either over the points of the special set 
or over the points of a general set using a mul t ip l ic i ty  
factor. 

If  a set of special positions have symmet ry  repre- 
sented by  a non-diagonal  matr ix ,  the s i tuat ion is 
somewhat  different in tha t  some parameters  m a y  be 

,~ f  i(r) = ( .~  Dss(q)Nks(v)hk)(~, Dtt  (q) Nkt(P)hk) 
k k 

= Hs(r)Ht(r). (16) 

The structure factor now becomes 

f ~" • exp { ~ Dss(q)Dtt(q) ~ ( ~ ,  N~8(p)hk) 
p q i j 

(s,t) 

x (Z, Nk~(P)h~)Qi~bj + 27d (.~, Dii(q) ~, ( .~  Nk#p)hk)P~jas 
k i ] k 

+ ~ hil:i(r))} . (17) 
i 
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The structure factor in this form (17) is applicable 
to any position of any space group. It is easily seen 
tha t  the presence of the P~j and Q~j terms although 
required for the evaluation of derivatives complicates 
the calculation procedure. It  would appear therefore, 
tha t  it would be worthwhile to use form (17) for 
special positions of 'non-diagonal symmetry '  and to 
investigate the simpler form resulting in diagonal 
P and Q. This simpler form is applicable to special 
positions of 'diagonal symmetry '  or to general posi- 
tions, obtained by setting P = O = 1 and is given by 

f ~ ~ exp ( Z  Dss(q)Dtt(ql(~Y, Nk,(plhk)(~Y, NktIplh~)bt 
p q i k k 

+9~i(ZD,(q)(2N,~,(~)h~)a~+2h,-,:,(r))}. (18) 
i k i 

If the quantities 

( 2  h, ~,(r)), (:V N~,(~)h~) and ( 2  N~s(~)h~)(2: N~,(~)h~) 
i k k k 

are formed when the indices hi are first obtained, no 
great amount of time is lost. As each set of b~ or at 
are called from storage for calculation, the multiplica- 
tion by the appropriate 

k k k 

can be carried out. The subsequent summation over 
q now has an invariant form, no matter what the value 
of p may be. This form requires that the arguments 
of the exponential be obtained as sums or differences 
of the quantities above, since Dss(q)Dtt(q)-- _+ 1. If the 
sum of the terms is prepared when the products are 
formed, each successive argument for a new value of 
q can be obtained (in a binary computer) by a left 
shift 1 place of the terms which change sign and sub- 
traction of the results from the sum. A similar proce- 
dure will work for the positional parameters. A suit- 
able set of D(q) would be [100] [100] [1001 [ 00] 

OlO OlO oro / OlO . 
oo ]. oo  oo i j oo 1 

Each set of position coordinates would specify which 
of the (r) points should be used in the structure 
factor sum. As an example, the argument for the 
thermal factor for the second matrix above would be 
formed by 

. ~  ._,Y h~hjfl~ - 2(2haha ~13 + 2h2h3f123) 
i j 

or in the alternative notation 

. _ ~ b ~ - 2  (~'~sbs+~6b6). 
i 

The proper choice of signs and terms is invariant  and 
can be built into the summation over q part  of the 
program. The summation over p is accomplished by 
looping and supplying a new set of 

k 

and of the products. This procedure results in a 
substantial saving of multiplication time in the forma- 
tion of arguments and permits a straight forward 
treatment of symmetry transformations. In the worst 
case of 'non-diagonal' special positions, the general 
routine is used but the specification of the special 
symmetry is easily made by means of the P and O. 
This avoids the difficulties of writing special patches. 

The general form (17) can be handled in the same 
way, if derivatives are not wanted, by simply entering 
explicitly without P and Q each ai and b~ and either 
using a multiplicity factor or a selection device to 
select a desired set of terms. However, if derivatives 
are desired, the P and O matrices are required to form 
the proper linear combinations. 
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